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Dark and bright shock waves on oscillating backgrounds
in a discrete nonlinear Schrödinger equation
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Dark and bright shock waves on top of arbitrary oscillating backgrounds are investigated in a discrete
version of the nonlinear Schro¨dinger equation. The existence of analytical curves in the parameter space
corresponding to shock wave formation is established for arbitrary wave numbersk of the background radia-
tion. The analysis is based on the small-amplitude approximation and is confirmed by direct numerical inte-
grations of the system.@S1063-651X~97!02508-7#

PACS number~s!: 03.20.1i, 11.10.Lm, 42.65.2k
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I. INTRODUCTION

The general discrete nonlinear Schro¨dinger ~GDNLS!
equation

i q̇n1~12euqnu2!~qn211qn1122qn!12~r22uqnu2!qn50
~1!

was introduced in Refs.@1–4# as a generalization of th
simple tight-binding linear Schro¨dinger model for the dy-
namics of quasiparticles in a molecular crystal. This mo
naturally appears in the theory of intrinsic localized mod
@5# and describes Frenkel excitons in a one-dimensio
chain of two-level atoms with energy transfer by an e
change interaction@6,7#. In order to study Eq.~1! in a gen-
eral context,qn is regarded as the displacement field,e is a
deformation parameter, which in the present paper will
considered positive (0,e,1), r is a constant that is asso
ciated with the amplitude ofqn at infinity,

lim
n→6`

qn5rexp$2 i ~vt2kn6w!%, ~2!

and

v[v~k!54~12er2!sin2
k

2
~3!

represents the dispersion relation of a plane wave with
plitude r, wave numberk ~taken in the first Brillouin zone
@2p,p#), and phasewP@0,p#. From a mathematical poin
of view Eq. ~1! represents a norm-preserving deformation
the diagonal~on-site! discretization of the nonlinear Schro¨-
dinger equation~DNLS!, which reduces fore51 to the in-
tegrable Ablowitz-Ladik model@8# and fore50 to the non-
integrable DNLS system. The presence of the deforma
parameter in the model allows one to study the interp
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between on-site–intersite interactions as well
integrability-nonintegrability and discrete-continuum prope
ties as done in Refs.@4,9–13#. The aim of the present pape
is to show the existence of shock waves in the GDNLS s
tem moving on backgrounds with arbitrary wave numbers
the Brillouin zone~BZ!. These shock waves are in som
aspects similar to those found in other integrable@14–17#
and nonintegrable models@18,19#. In particular, their profiles
can be considered as consisting of three qualitatively dif
ent components: a smooth part, which at the initial stage
the evolution corresponds to the rear or to the front~in some
cases represented below!; a rapidly varying ‘‘front,’’ and a
train of solitonlike pulses. On the other hand, the sho
waves we discuss also possess a number of different feat
First, our model allows the existence of bothbright anddark
shock waves. Second, the evolution of a shock wave~in the
long-wavelength limit! is described by the simple first-orde
equationct1ccx50 @20#, which is different from the one
governing shocks in other discrete systems@19#. Using this
equation, we can predict the breaking time of the wave
excellent agreement with numerical results. Third, there e
two branch lines in parameter space on which shock wa
propagate with different velocities and are characterized
different effective nonlinearities. Fourth, the mutual locati
of the components of the waves with respect to the w
front depends on the problem parameters. Finally, the sh
waves reported here, in contrast with the ones observe
other nonlinear lattices, develop from smooth initial~bright
or dark! profiles@13# and disappear in the integrable limit o
the model.

The organization of the paper is as follows. In Sec. II w
develop the theory of the shock waves based both on lin
analysis and on multiscale expansion. In Sec. III we prov
a numerical investigation of the shock wave dynamics and
Sec. IV we discuss the numerical results on the basis of
analytical considerations. Finally, the main results of the
per are briefly summarized in Sec. V.

II. SHOCK WAVES IN THE SMALL-AMPLITUDE LIMIT

In order to describe shock wave formation in the GDNL
system it is more convenient to perform the change of v
ables

,
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3612 56V. V. KONOTOP AND M. SALERNO
cn5qnexp~ ivt2 ikn!. ~4!

Equation~1! then becomes

i ċn1cos~k!~12eucnu2!~cn111cn2122cn!

1 isin~k!~12eucnu2!~cn112cn21!

12~12e1ecosk!cn~r22ucnu2!50, ~5!

subject to the boundary condition

lim
n→6`

cn5rexp~6 iw!. ~6!

For e51 Eq.~5! is recognized as the discrete Hirota~DH!
equation, which is integrable by means of the inverse s
tering technique@21# and has exact dark multisoliton solu
tions @7#. In the following sections we study the linear exc
tation and the small-amplitude limit of Eq.~5!, which in the
following we refer to as the deformable discrete Hiro
~DDH! equation.

A. Linear analysis

Let us start our investigation with the analysis of the l
ear excitations of Eq.~5!. This will provide information both
on the stability of the background field and on the existe
of regions of the parameter space where shock waves ca
observed. To this end we consider the solution of Eq.~5! in
the form cn5r1fn where ufnu!r. By expanding Eq.~5!
with respect tofn , we obtain to first order the dispersio
relation of linear waves

V6~K !52sink~12er2!sinK64Acosk~12er2!sin~K/2!

3@cosk~12er2!sin2~K/2!

1~12e1ecosk!r2#1/2. ~7!

From Eq. ~7! it follows that the background is modula
tionally stable for er2,1 and kP@2p,k02p] ø2p/2,
p/2ø@p2k0 ,p] or for er2.1 and kP@k02p,p/
2]ø@p/2,p2k0#, where k05cos21(e2121) at e.1/2 and
k050 otherwise. In particular, we have that in the integra
limit ( e51) only backgrounds wither2,1 are stable. Be-
low we shall restrict our consideration to only these regio
of stability. It is worth remarking that the dispersion relatio
has two branches and the expansion of the group velo
V65dV6 /dK at smallK gives

V65c62Fsink7
cosk

4 S 3

r
A~12er2!cosk

12e1ecosk

2rA 12e1ecosk

~12er2!coskD G12er2

3
K21O~K4!, ~8!

where

c652sink~12er2!62rAcosk~12er2!~12e1ecosk!
~9!

is the group velocity of the harmonicK50. Note thatc650
at r51/Ae. This amplitude corresponds to singular poin
that split the chain in a sequence of independent segm
@13#, implying that no energy transfer along the cha
t-

e
be

e

s
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nts

is possible at such an amplitude of the background. Fro
physical point of view one expects shock waves to oc
when the nonlinearity dominates the group velocity disp
sion @note that if the nonlinearity is weak, one can use e
pansion~8! to calculate the dispersion as a function of t
parameters#. Obviously, the weakest dispersion appears
the case when the factor ofK2 in Eq. ~8! is zero, i.e., when

4sink56coskS 3

r
A~12er2!cosk

12e1ecosk
2rA 12e1ecosk

~12er2!coskD .

~10!

From this condition it is clear that waves moving on differe
backgrounds display shocks on different curves in the
rameter spacer2e. In Figs. 1~a! and 1~b! we have reported
the curvese(r,k) obtained from Eq.~10! for different values
of k, i.e.,

e65
1

r2F 9cos3k2r2@ f 6~k!#2

9cos3k2~12cosk!@ f 6~k!#2G , ~11!

where

f 6~k!52sink6Asin2k13. ~12!

We remark that atk50 ~uniform backgrounds!, Eq. ~11!
reproduces the simple relatione5r222321 obtained in Ref.
@13#. Moreover, forkÞ0 ~in the caseer2,1) andkÞp ~in
the caseer2.1) splitting of the curves occurs and tw
branches appear. The most interesting region from a phys
point of view is that defined by the conditioner2,1. For
er2.1, however, the dynamics governed by the DDH eq
tion also displays some interesting features. One of them
seen in Fig. 1~b!: for eachk there exists a cutoff value ofe
represented by the point where two branches with the samk
intersect. One can readily check that these intersection po
occur at ecut5(12cosk)21, this being just the threshold
value for linear stability. We expect, therefore, that on t
part of the curves of Fig. 1~b! above ecut , shock waves
should not exist because of the modulational instability
the background.

B. Small-amplitude expansion

The equation governing shock wave dynamics~at the ear-
lier stages of their evolution! can be obtained in the smal
amplitude limit by following the same analysis of Ref.@13#.
Here we generalize the corresponding expansions to the
of arbitrary k in the BZ. To this end we represen
cn5(r1m2a)exp(2imf), where a5a01m2a1, and
f5f01m2f1, wherem is a small parameter (m!1). By
introducing a spatial variableX5mn, which is treated as a
continuum variable, as well as ‘‘slow’’ timesT5mt and
t5m3t ~regarded as continuous! we derive the expansion
with respect to the small parameters and arrive, in the low
orders inm, at the equations for the phasef0, and amplitude
a0

]2f0

]T2 12g
]2f0

]T]X
2b

]2f0

]X2 50,

]a0

]T
1g

]a0

]X
5

g

2 tank

]2f0

]X2 ,

~13!
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56 3613DARK AND BRIGHT SHOCK WAVES ON OSCILLATING . . .
where

b54~12er2!@r2cosk2sin2k1er2~12cosk!# ~14!

and

g52~12er2!sink. ~15!

The general solution of Eq.~13! is represented by two dis
persionless waves propagating with velocitiesc6 given by

FIG. 1. ~a! Shock wave formation curvese6 in Eq. ~11! plotted
for several values of the background wave number 0<k<p/2. The
continuous curve with stars refers tok50, the dashed lines to
k5p/3, the dotted ones tok5p/6, and the continuous one t
k5p/2. The curves on the left of thek50 curve refer to the posi-
tive branche1 , while those on the right refer to the negative on
The curvee1(k5p/2) is not seen because it overlaps with t
vertical axis (r50). ~b! Same as in~a!, but for wave numbers
p/2<k<p. The continuous curve with stars refers tok5p, the
dashed lines tok5

5
6p, and the continuous ones tok5

2
3p. The

curves starting ate51 on the left of thek5p curve refer to the
positive branche1 , while those starting on the right refer to th
negative one. The intersection point of two branch lines of the sa
type gives the threshold for the modulational stability of the ba
ground.
Eq. ~9! ~note that c6 can be rewritten in the form
c65g6Ag21b). Introducing a running variable
j65X2c6T and looking at solutions of the form
f0[f0(j6 ,t), we can expressa0 throughf0 as

a05a657
1

2r
A~12er2!cosk

12e1ecosk

]f0

]j6
. ~16!

By taking into account Eq.~16! and collecting the terms o
the order ofm4 and m5, we finally arrive at a system o
equations whose compatibility condition is expressed as

]a6

]t
2b1

~6 !~k!a6

]a6

]j6
2b2

~6 !~k!
]a6

]j6
3 50, ~17!

where the coefficientsb1,2(k) are given by

b1
~6 !~k!52r2sinkS 4e1

12e

cosk D72rAcosk
12e1ecosk

12er2

3~324er2!, ~18!

b2
~6 !~k!5

12er2

12 F24sink6coskS 3

r
A~12er2!cosk

12e1ecosk

2rA 12e1ecosk

~12er2!coskD G . ~19!

Equation ~17! is just a Korteweg–de Vries~KdV! equa-
tion for a6 with respect to the space variablej6 . For
b2

(6)(k)50 Eq. ~17! transforms to the well-known equatio
@20#

]a6

]t
2b1

~6 !~k!a6

]a6

]j6
50 ~20!

governing shock waves. It is worth noting that the conditi
b2

(6)(k)50 is nothing but Eq.~11! obtained before using
qualitative arguments. We also remark that the approac
Eq. ~17! is more general since it allows one to estimate a
the effective nonlinearity. In particular, ate51 one has that
b1

(6)(k)50 if b2
(6)(k)50 and hence shock waves cann

exist. This result is predictable sincee51 corresponds to the
exactly integrable discrete Hirota equation, which does h
dark soliton solutions@7# but not shock waves. From Eq
~18! it also follows that in the nonintegrable case (eÞ1)
b1(p/2)5`. Formally, this means that the pointk5p/2 at
eÞ1 is out of the applicability region of the small-amplitud
approximation. Since a wave packet with the spectrum c
tered atk5p/2 has harmonics withk.p/2, the background
becomes unstable ask→p/210 ~see the linear analysi
above!.

III. NUMERICAL ANALYSIS

To check the above analytical results we have numeric
integrated Eq.~1! using a fifth-order adaptive step siz
Runge-Kutta algorithm. The chain was taken to be lo
enough to ignore boundary conditions and the initial con
tion was taken as

.
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3614 56V. V. KONOTOP AND M. SALERNO
qn5rei ~kn1f!S 16
s

cosh@~n2n0!#2D , ~21!

i.e., a bell-shaped profile on top of an oscillating backgrou
of amplituder, wave numberk, and frequencyv @given by
Eq. ~3!#. We investigate first the case of shock waves
uniform backgrounds (k50) for which the two branch
curvese6 in parameter space coincide@see Eq.~11!#. We
examine successively the case of shock waves on arbi
backgrounds.

In Fig. 2 we report the time evolution of a bright@the plus
sign in Eq.~21!# initial profile of amplitudes52 on a back-
ground characterized byk50 andr5A3. We see that the
initial profile splits into two smooth profiles moving in op
posite directions, both bending in the direction of propa
tion and developing, after a certain time, oscillations start
from the top. We define the breaking timetB of the wave as
the time at which the oscillations first appear on the profil
An estimate of this time for an initial profileq5 f (j) can be
obtained from the continuous equation~20! as
tB52@F8(jB)#21, whereF(j)5a„f (j)… andjB is the value
of the characteristic for whichF8(j),0 anduF(j)u is maxi-
mum. Using Eq.~20!, we readily obtain

tB5
A3

2sn2~4r223!

cosh2~njB!

tanh~njB!
, ~22!

with sinhnjB5sinh21(1/2). In Fig. 3 we report the breakin
time as obtained from Eq.~22! ~continuous curve! in com-
parison with direct numerical experiments~dotted squares!.
We see that there is good agreement between the theory
the numerical analysis up to times of the order of the bre
ing time. In Fig. 4 we report the profile of one of the shoc
of Fig. 2 after an evolution timet52400. From this figure it
is clear that the oscillation that develops behind the bri
shock generates, after a long time, a train of solitons with
solitons in the front widely spaced with respect to the one
the end. We note that the two leading solitons in Fig. 4
more closely spaced than the following leading ones,

FIG. 2. Evolution of bright shocks against nonzero backgrou
with k50, r5A3, ande50.
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being reminiscent of the shock wave front formed at ear
times. By reducing the amplitude of the initial profile the tw
leading solitons are found to be very close for long tim
~they separate very slowly with respect to each other!, while
the rest of the solitons in the train arrange in a triangu
shaped configuration. Moreover, as the amplitude of the
tial profile is reduced, the time required to decompose
bright shock into solitons increases, but the scenario
served is just the same. In the case of a dark shock
picture is quite different since complicated oscillations b
hind the shock front develop and the soliton component
the wave becomes evident only when approaching the i
grable limit. To show this we report in Fig. 5 the time ev
lution of a dark@the minus sign in Eq.~21!# initial profile on
a background characterized byk50 with r5A3 ande de-
rived from Eq.~11!. We see that there is a sharp transiti
between the front of the wave profile and the backgrou
radiation that develop in the rear. By increasing the value
e along the corresponding curve in Fig. 1~a! it becomes evi-
dent that a dark shock is characterized by three regions:
wave front, which is a smooth profile~ending with a discon-
tinuity!; the middle, which can be interpreted in terms of
soliton train~see below!; and the tail, which appears as bac

d

FIG. 3. Breaking time versus the amplitude of the shock for
same parameter values as in Fig. 2. The continuous curve refe
Eq. ~20!, while the dotted squares are experimental points.

FIG. 4. Profile of one of the bright shocks of Fig. 2 after a
evolution time of 2400.
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56 3615DARK AND BRIGHT SHOCK WAVES ON OSCILLATING . . .
ground radiation. This is clearly seen from Fig. 6, where
profile of a dark pulse is reported after an evolution tim
t57200 for parameter valuesk50, r51, and e5 2

3. To
clearly distinguish the front, the middle, and the oscillati
tail of the shock we use different line thicknesses for
front and the middle part, while the tail is plotted just b
points. Analyzing the oscillating part of the profile in Fig.
we find that its harmonic content changes as one moves
wards the far end of the wave. This is clearly seen in Fig
where the power spectrum of the oscillating part of the p
file in Fig. 6 is reported. The signal is spliced into 20 co
secutive intervals of 256 points and for each interval
spectrum is displayed. We see that at the end of the tail
wavelength of the signal approaches the limiting value o
~see the lowest curve in Fig. 7!, i.e., the wave numberk of
the radiation approaches the edge of the Brillouin zo
(k5p). Moving towards the integrable limit, we find tha
the tail radiation is reduced while the middle region is e
hanced and its interpretation in terms of a train of solito
becomes more evident. This is shown in Fig. 8, in which
dark shock profile at timet52400, for parameter value
k50, e50.95, andr derived from Eq.~11!, is reported. At
e51 ~the DH limit! we find that the background radiation
the tail completely disappears and the shock wave dege
ates into a triangular-shaped train of solitons. Thus, at

FIG. 5. Evolution of dark shocks against nonzero backgrou
with k50, r5A3, ande50.

FIG. 6. Profile of one of the dark shocks of Fig. 5 after a time
7200.
e

e
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,
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e
e

2

e

-
s
a

er-
e

deformation parameter close to 1, the middle part of
shock wave can be correctly interpreted as a train of d
solitons. The above behavior generalizes to nonunifo
backgrounds with arbitrary wave numbers in the BZ. In p
ticular, in Fig. 9 we report the profile of a dark shock wa
after an evolution timet51000 moving on a backgroun
characterized byk5p/6 and e50.3 with r obtained from
curvee1 in Eq. ~11!. By increasing the value ofe along the
curvee1 ~i.e., moving towards the integrable DH limit! we
observe the same phenomena described in thek50 case.
These results are quite general and hold true for other p
tive e branches of Fig. 1. On the other hand, the behavio
a dark shock is different for parameter values on the nega
e branches. This is evident from Fig. 10, where the profile
a dark shock wave developing from an initial profile of am
plitudes52.1 on a background with wave numberk5p/6 is
reported fore50.3 andr obtained from the correspondin
curvee2 in Fig. 1~a!. It is remarkable that the wave develop
a rectangular wave front followed by a train of solitons wi
background radiation at the end~a possible interpretation o

d

f

FIG. 7. Power spectrum analysis of the oscillating part~points!
of the dark shock in Fig. 6. The signal is divided in 20 consecut
intervals of 256 points each starting from the head. The logarit
of the power spectrum is reported on the vertical axis versus
reciprocal of the wavelength for each interval.

FIG. 8. Same as in Fig. 6, but fore50.95 andr derived from
Eq. ~11!. The evolution time is 2400.
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3616 56V. V. KONOTOP AND M. SALERNO
the square wave front in terms of closely spaced solit
bunched together is quite appealing!. A similar phenomenon
is observed also in the case of bright shocks on negative
branches. This can be seen from Fig. 11, where the profil
a bright shock on the background withk5p/6, e50.3, and
r determined from the curvee2 in Eq. ~11! is reported. Note
that in this case the square wave front is more ‘‘rounde
than the one in Fig. 10. This depends on the amplitude~en-
ergy! of the initial profile, which in this case is smalle
@s51.2 instead ofs52.1 in Eq. ~21!#. As we increase the
amplitude of the initial profile the leading square wave b
comes sharper, but the phenomenon also becomes mor
volved ~more shock waves, usually of different kinds, m
be created!. This is shown in Fig. 12, where the time evol
tion of an initial profile of amplitudes52.2 is reported. We
see that the initial profile splits into two waves moving
opposite directions. The profile of the wave moving on t
right is reported in Fig. 13 after an evolution timet53600.
From this figure it is evident that there are really two sho
waves, one bright and the other dark. The inset of Fig.

FIG. 9. Dark shock profile after an evolution timet51000, for
parameter valuese50.3, k5p/6, andr derived from the positive
branch curvek5p/6 of Fig. 1~a!.

FIG. 10. Profile of a dark shock of the DDH equation for p
rameter valuese50.3, k5p/6, andr derived from the negative
branch curvek5p/6 of Fig. 1~a!. The total evolution time is
t51800.
s

of

’’

-
in-

e

k
3

shows the wave fronts of the two shock waves plotted
points ~diamonds! joined by lines from which the sharpnes
of the leading square wave is clearly seen. The other sm
wave moving on the left of Fig. 12 is also found in the tim
evolution of an initial bright profile for parameter value
taken on the positive branchese1 in Eq. ~11!. We have in-
vestigated also the behavior of shocks on curves of Fig. 1~b!,
i.e., for wave vectorsp.k.p/2. In this case we have tha
in agreement with our stability analysis, shock wave form
tion is possible only on the part of the curves that satisfy
stability criterion derived in Sec. II B.

Finally, we have investigated scattering processes
shock waves of different types. Quite surprisingly, we fi
that the shock profiles, like solitons, are well preserved un
scattering processes as shown in Fig. 14 for the case
bright-dark shock collision. This result further confirms th
existence of a strong solitonic component in the shock w
described above~details of this phenomenon will be give
elsewhere@22#!.

FIG. 11. Bright shock profile for parameter valuese50.3,
k5p/6, and r derived from the corresponding negative bran
curve of Fig. 1~a!. The amplitude of the initial profile iss51.26 and
the total evolution time ist52400.

FIG. 12. Time evolution of an initial bright profile of the DDH
equation for parameter valuese50.3, k5p/6, andr derived from
the corresponding negative branch curve of Fig. 1~a!. The ampli-
tude of the initial profile iss52.1.



la
w
m

ire

en
o

ng

-
s
th

ut
d
d
bl
-
n

fo
b
e
ca
lv

lop
ow
m
v
o

th

,

rk

ds
e-
the
can
k
tive

ove
istic

is
hat
fir-
case

the
ark
u-
m-

ap-
i-
c.
t.

di-
on

near
ug-

ike
on.

m
.
ale

s in
e
b

56 3617DARK AND BRIGHT SHOCK WAVES ON OSCILLATING . . .
IV. DISCUSSION

In order to interpret our numerical results and in particu
the relatively stable single pulses originated by shocks,
have used the soliton terminology. Since for generic para
eter values the model is not integrable, this point requ
further explanation. To this end we note from Eq.~16! that
the phase mismatch between neighboring particles dep
on the amplitude of the wave. This implies that the change
the amplitude during the shock evolution results in a cha
of the central wave vector of the wave packet~this is also
confirmed by our simulations!. In turn, this means that local
ized modes associated with shocks are out of the region
the spectral space that corresponds to shock waves, i.e.,
cannot produce secondary shocks. On the other hand, o
these regions~however, not too far!, the pulses are describe
by the KdV equation~10!. If the wave number is change
significantly, then the provided expansion is not applica
anymore, but forV not too small it is known that any con
servative discrete system possesses an envelope solito~in
some approximation of course! @23#. Such solutions are quite
stable and propagate along the chain without distortion
long times. Their amplitude, a small parameter, multiplied
the width gives a quantity of order one. As is clearly se
from the inset of Fig. 13, localized pulses in the numeri
experiments have amplitudes of order 0.1–0.3 and invo
about ten sites, i.e., have characteristics typical for enve
solitons. A more detailed analysis of this phenomenon, h
ever, requires further analytical investigations. Another i
portant feature observed in the dynamics of the shock wa
described above is the alternation of the location of the sh
front with respect to the characteristicn5V6t. A prelimi-
nary explanation of it can be obtained by observing that
coefficientb1

6(k) subject to the condition~11! takes the form

b1
~6 !~k!518~12e!

cos2k@sink7u f 6~k!u#
e@9cos3k2~12cosk! f 6

2 ~k!#1 f 6
2 ~k!

.

~23!

It follows from this expression thatb1
(6)(k) changes its sign

together with the function sink7uf6(k)u. On the other hand
from Eq. ~20! we calculate that the sign ofb1

(6) determines

FIG. 13. Right profile of Fig. 12 plotted after an evolution tim
t53600. The inset shows the leading part of the profile plotted
points ~diamonds! joined by lines.
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whether the shock occurs in the front part of the da
@a6(k),0# wave@b1

(6)(k).0#, when the parts of the wave
characterized by largerua6(k)u display higher velocity, or in
the rear of the dark wave@b1

(6)(k).0#. Applying these ar-
guments to the situation depicted in Fig. 9 one fin
6b1

(6),0, in complete agreement with the numerical r
sults. It is also of interest to remark that some features of
more involved phenomenon reported in Figs. 12 and 13
be explained on the basis of Eq.~20!. Indeed, as long as dar
and bright waves are characterized by positive and nega
values ofa6 , it follows from Eqs.~20! and ~23! that being
excited at one point, the bright and dark shock waves m
towards opposite directions with respect to the character
n5V6t. Since, however, the speed of the relative motion
proportional to the amplitude, it is a small parameter and t
is why the separation of the pulses occurs slowly. A con
mation that these arguments are indeed applicable to the
depicted in Fig. 12 follows from the fact thatf 2(p/6).0
and hence, taking into account the negative velocity of
motion, the bright shock must be more rapid than the d
one, i.e., exactly what one sees in Fig. 12. Finally, our n
merical experiments clearly show that moving in the para
eter space along the curves~11! towards the integrable limit
e51, the background radiation is always reduced and dis
pears ate51 where the shock wave ‘‘dissolves’’ into a sol
ton’s train. This agrees with our analytical prediction in Se
II B, i.e., that shock waves in the DH limit should not exis

V. CONCLUSION

In this paper we have shown that under suitable con
tions bright and dark shock waves exist in the GDNLS
oscillating backgrounds of arbitrary wave numberk. The
methods used to characterize these waves, i.e., the li
analysis and the small-amplitude multiscale expansion, s
gest that similar phenomena exist also in other DNLS-l
systems with different types of nonlinearities and dispersi
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